Files
lkl_linux/drivers/media/pci/intel/ipu-bridge.c
Wentong Wu c66821f381 media: pci: intel: Add IVSC support for IPU bridge driver
Previously on ACPI platforms, sensors that are intended to be connected
to an IPU device for use with the ipu3-cio2 driver lacking the necessary
connection information in firmware. IPU bridge driver is to connect
sensors to IPU device via software nodes.

Currently IVSC located between IPU device and sensors is available in
existing commercial platforms from multiple OEMs. But the connection
information between them in firmware is also not enough to build V4L2
connection graph. This patch parses the connection properties from the
SSDB buffer in DSDT and build the connection using software nodes.

IVSC driver is based on MEI framework (previously known as HECI), it
has two MEI clients, MEI CSI and MEI ACE. Both clients are used to
communicate messages with IVSC firmware. Linux abstracts MEI client
as a device, whose bus type is MEI. And the device is addressed by a
GUID/UUID which is part of the device name of MEI client. After figured
out MEI CSI via the UUID composed device name, this patch setup the
connection between MEI CSI and IPU, and the connection between MEI CSI
and sensor via software nodes.

Signed-off-by: Wentong Wu <wentong.wu@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@kernel.org>
2023-08-14 20:27:55 +02:00

815 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Author: Dan Scally <djrscally@gmail.com> */
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/mei_cl_bus.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/string.h>
#include <linux/workqueue.h>
#include <media/ipu-bridge.h>
#include <media/v4l2-fwnode.h>
/*
* 92335fcf-3203-4472-af93-7b4453ac29da
*
* Used to build MEI CSI device name to lookup MEI CSI device by
* device_find_child_by_name().
*/
#define MEI_CSI_UUID \
UUID_LE(0x92335FCF, 0x3203, 0x4472, \
0xAF, 0x93, 0x7B, 0x44, 0x53, 0xAC, 0x29, 0xDA)
/*
* IVSC device name
*
* Used to match IVSC device by ipu_bridge_match_ivsc_dev()
*/
#define IVSC_DEV_NAME "intel_vsc"
/*
* Extend this array with ACPI Hardware IDs of devices known to be working
* plus the number of link-frequencies expected by their drivers, along with
* the frequency values in hertz. This is somewhat opportunistic way of adding
* support for this for now in the hopes of a better source for the information
* (possibly some encoded value in the SSDB buffer that we're unaware of)
* becoming apparent in the future.
*
* Do not add an entry for a sensor that is not actually supported.
*/
static const struct ipu_sensor_config ipu_supported_sensors[] = {
/* Omnivision OV5693 */
IPU_SENSOR_CONFIG("INT33BE", 1, 419200000),
/* Omnivision OV8865 */
IPU_SENSOR_CONFIG("INT347A", 1, 360000000),
/* Omnivision OV7251 */
IPU_SENSOR_CONFIG("INT347E", 1, 319200000),
/* Omnivision OV2680 */
IPU_SENSOR_CONFIG("OVTI2680", 0),
/* Omnivision ov8856 */
IPU_SENSOR_CONFIG("OVTI8856", 3, 180000000, 360000000, 720000000),
/* Omnivision ov2740 */
IPU_SENSOR_CONFIG("INT3474", 1, 360000000),
/* Hynix hi556 */
IPU_SENSOR_CONFIG("INT3537", 1, 437000000),
/* Omnivision ov13b10 */
IPU_SENSOR_CONFIG("OVTIDB10", 1, 560000000),
/* GalaxyCore GC0310 */
IPU_SENSOR_CONFIG("INT0310", 0),
};
static const struct ipu_property_names prop_names = {
.clock_frequency = "clock-frequency",
.rotation = "rotation",
.orientation = "orientation",
.bus_type = "bus-type",
.data_lanes = "data-lanes",
.remote_endpoint = "remote-endpoint",
.link_frequencies = "link-frequencies",
};
static const char * const ipu_vcm_types[] = {
"ad5823",
"dw9714",
"ad5816",
"dw9719",
"dw9718",
"dw9806b",
"wv517s",
"lc898122xa",
"lc898212axb",
};
/*
* Used to figure out IVSC acpi device by ipu_bridge_get_ivsc_acpi_dev()
* instead of device and driver match to probe IVSC device.
*/
static const struct acpi_device_id ivsc_acpi_ids[] = {
{ "INTC1059" },
{ "INTC1095" },
{ "INTC100A" },
{ "INTC10CF" },
};
static struct acpi_device *ipu_bridge_get_ivsc_acpi_dev(struct acpi_device *adev)
{
acpi_handle handle = acpi_device_handle(adev);
struct acpi_device *consumer, *ivsc_adev;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ivsc_acpi_ids); i++) {
const struct acpi_device_id *acpi_id = &ivsc_acpi_ids[i];
for_each_acpi_dev_match(ivsc_adev, acpi_id->id, NULL, -1)
/* camera sensor depends on IVSC in DSDT if exist */
for_each_acpi_consumer_dev(ivsc_adev, consumer)
if (consumer->handle == handle)
return ivsc_adev;
}
return NULL;
}
static int ipu_bridge_match_ivsc_dev(struct device *dev, const void *adev)
{
if (ACPI_COMPANION(dev) != adev)
return 0;
if (!sysfs_streq(dev_name(dev), IVSC_DEV_NAME))
return 0;
return 1;
}
static struct device *ipu_bridge_get_ivsc_csi_dev(struct acpi_device *adev)
{
struct device *dev, *csi_dev;
uuid_le uuid = MEI_CSI_UUID;
char name[64];
/* IVSC device on platform bus */
dev = bus_find_device(&platform_bus_type, NULL, adev,
ipu_bridge_match_ivsc_dev);
if (dev) {
snprintf(name, sizeof(name), "%s-%pUl", dev_name(dev), &uuid);
csi_dev = device_find_child_by_name(dev, name);
put_device(dev);
return csi_dev;
}
return NULL;
}
static int ipu_bridge_check_ivsc_dev(struct ipu_sensor *sensor,
struct acpi_device *sensor_adev)
{
struct acpi_device *adev;
struct device *csi_dev;
adev = ipu_bridge_get_ivsc_acpi_dev(sensor_adev);
if (adev) {
csi_dev = ipu_bridge_get_ivsc_csi_dev(adev);
if (!csi_dev) {
acpi_dev_put(adev);
dev_err(&adev->dev, "Failed to find MEI CSI dev\n");
return -ENODEV;
}
sensor->csi_dev = csi_dev;
sensor->ivsc_adev = adev;
}
return 0;
}
static int ipu_bridge_read_acpi_buffer(struct acpi_device *adev, char *id,
void *data, u32 size)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
acpi_status status;
int ret = 0;
status = acpi_evaluate_object(adev->handle, id, NULL, &buffer);
if (ACPI_FAILURE(status))
return -ENODEV;
obj = buffer.pointer;
if (!obj) {
dev_err(&adev->dev, "Couldn't locate ACPI buffer\n");
return -ENODEV;
}
if (obj->type != ACPI_TYPE_BUFFER) {
dev_err(&adev->dev, "Not an ACPI buffer\n");
ret = -ENODEV;
goto out_free_buff;
}
if (obj->buffer.length > size) {
dev_err(&adev->dev, "Given buffer is too small\n");
ret = -EINVAL;
goto out_free_buff;
}
memcpy(data, obj->buffer.pointer, obj->buffer.length);
out_free_buff:
kfree(buffer.pointer);
return ret;
}
static u32 ipu_bridge_parse_rotation(struct acpi_device *adev,
struct ipu_sensor_ssdb *ssdb)
{
switch (ssdb->degree) {
case IPU_SENSOR_ROTATION_NORMAL:
return 0;
case IPU_SENSOR_ROTATION_INVERTED:
return 180;
default:
dev_warn(&adev->dev,
"Unknown rotation %d. Assume 0 degree rotation\n",
ssdb->degree);
return 0;
}
}
static enum v4l2_fwnode_orientation ipu_bridge_parse_orientation(struct acpi_device *adev)
{
enum v4l2_fwnode_orientation orientation;
struct acpi_pld_info *pld;
acpi_status status;
status = acpi_get_physical_device_location(adev->handle, &pld);
if (ACPI_FAILURE(status)) {
dev_warn(&adev->dev, "_PLD call failed, using default orientation\n");
return V4L2_FWNODE_ORIENTATION_EXTERNAL;
}
switch (pld->panel) {
case ACPI_PLD_PANEL_FRONT:
orientation = V4L2_FWNODE_ORIENTATION_FRONT;
break;
case ACPI_PLD_PANEL_BACK:
orientation = V4L2_FWNODE_ORIENTATION_BACK;
break;
case ACPI_PLD_PANEL_TOP:
case ACPI_PLD_PANEL_LEFT:
case ACPI_PLD_PANEL_RIGHT:
case ACPI_PLD_PANEL_UNKNOWN:
orientation = V4L2_FWNODE_ORIENTATION_EXTERNAL;
break;
default:
dev_warn(&adev->dev, "Unknown _PLD panel val %d\n", pld->panel);
orientation = V4L2_FWNODE_ORIENTATION_EXTERNAL;
break;
}
ACPI_FREE(pld);
return orientation;
}
int ipu_bridge_parse_ssdb(struct acpi_device *adev, struct ipu_sensor *sensor)
{
struct ipu_sensor_ssdb ssdb = {};
int ret;
ret = ipu_bridge_read_acpi_buffer(adev, "SSDB", &ssdb, sizeof(ssdb));
if (ret)
return ret;
if (ssdb.vcmtype > ARRAY_SIZE(ipu_vcm_types)) {
dev_warn(&adev->dev, "Unknown VCM type %d\n", ssdb.vcmtype);
ssdb.vcmtype = 0;
}
if (ssdb.lanes > IPU_MAX_LANES) {
dev_err(&adev->dev, "Number of lanes in SSDB is invalid\n");
return -EINVAL;
}
sensor->link = ssdb.link;
sensor->lanes = ssdb.lanes;
sensor->mclkspeed = ssdb.mclkspeed;
sensor->rotation = ipu_bridge_parse_rotation(adev, &ssdb);
sensor->orientation = ipu_bridge_parse_orientation(adev);
if (ssdb.vcmtype)
sensor->vcm_type = ipu_vcm_types[ssdb.vcmtype - 1];
return 0;
}
EXPORT_SYMBOL_NS_GPL(ipu_bridge_parse_ssdb, INTEL_IPU_BRIDGE);
static void ipu_bridge_create_fwnode_properties(
struct ipu_sensor *sensor,
struct ipu_bridge *bridge,
const struct ipu_sensor_config *cfg)
{
struct ipu_property_names *names = &sensor->prop_names;
struct software_node *nodes = sensor->swnodes;
sensor->prop_names = prop_names;
if (sensor->csi_dev) {
sensor->local_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IVSC_SENSOR_ENDPOINT]);
sensor->remote_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IVSC_IPU_ENDPOINT]);
sensor->ivsc_sensor_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_SENSOR_ENDPOINT]);
sensor->ivsc_ipu_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IPU_ENDPOINT]);
sensor->ivsc_sensor_ep_properties[0] =
PROPERTY_ENTRY_U32(names->bus_type,
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
sensor->ivsc_sensor_ep_properties[1] =
PROPERTY_ENTRY_U32_ARRAY_LEN(names->data_lanes,
bridge->data_lanes,
sensor->lanes);
sensor->ivsc_sensor_ep_properties[2] =
PROPERTY_ENTRY_REF_ARRAY(names->remote_endpoint,
sensor->ivsc_sensor_ref);
sensor->ivsc_ipu_ep_properties[0] =
PROPERTY_ENTRY_U32(names->bus_type,
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
sensor->ivsc_ipu_ep_properties[1] =
PROPERTY_ENTRY_U32_ARRAY_LEN(names->data_lanes,
bridge->data_lanes,
sensor->lanes);
sensor->ivsc_ipu_ep_properties[2] =
PROPERTY_ENTRY_REF_ARRAY(names->remote_endpoint,
sensor->ivsc_ipu_ref);
} else {
sensor->local_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IPU_ENDPOINT]);
sensor->remote_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_SENSOR_ENDPOINT]);
}
sensor->dev_properties[0] = PROPERTY_ENTRY_U32(
sensor->prop_names.clock_frequency,
sensor->mclkspeed);
sensor->dev_properties[1] = PROPERTY_ENTRY_U32(
sensor->prop_names.rotation,
sensor->rotation);
sensor->dev_properties[2] = PROPERTY_ENTRY_U32(
sensor->prop_names.orientation,
sensor->orientation);
if (sensor->vcm_type) {
sensor->vcm_ref[0] =
SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_VCM]);
sensor->dev_properties[3] =
PROPERTY_ENTRY_REF_ARRAY("lens-focus", sensor->vcm_ref);
}
sensor->ep_properties[0] = PROPERTY_ENTRY_U32(
sensor->prop_names.bus_type,
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
sensor->ep_properties[1] = PROPERTY_ENTRY_U32_ARRAY_LEN(
sensor->prop_names.data_lanes,
bridge->data_lanes, sensor->lanes);
sensor->ep_properties[2] = PROPERTY_ENTRY_REF_ARRAY(
sensor->prop_names.remote_endpoint,
sensor->local_ref);
if (cfg->nr_link_freqs > 0)
sensor->ep_properties[3] = PROPERTY_ENTRY_U64_ARRAY_LEN(
sensor->prop_names.link_frequencies,
cfg->link_freqs,
cfg->nr_link_freqs);
sensor->ipu_properties[0] = PROPERTY_ENTRY_U32_ARRAY_LEN(
sensor->prop_names.data_lanes,
bridge->data_lanes, sensor->lanes);
sensor->ipu_properties[1] = PROPERTY_ENTRY_REF_ARRAY(
sensor->prop_names.remote_endpoint,
sensor->remote_ref);
}
static void ipu_bridge_init_swnode_names(struct ipu_sensor *sensor)
{
snprintf(sensor->node_names.remote_port,
sizeof(sensor->node_names.remote_port),
SWNODE_GRAPH_PORT_NAME_FMT, sensor->link);
snprintf(sensor->node_names.port,
sizeof(sensor->node_names.port),
SWNODE_GRAPH_PORT_NAME_FMT, 0); /* Always port 0 */
snprintf(sensor->node_names.endpoint,
sizeof(sensor->node_names.endpoint),
SWNODE_GRAPH_ENDPOINT_NAME_FMT, 0); /* And endpoint 0 */
if (sensor->vcm_type) {
/* append link to distinguish nodes with same model VCM */
snprintf(sensor->node_names.vcm, sizeof(sensor->node_names.vcm),
"%s-%u", sensor->vcm_type, sensor->link);
}
if (sensor->csi_dev) {
snprintf(sensor->node_names.ivsc_sensor_port,
sizeof(sensor->node_names.ivsc_sensor_port),
SWNODE_GRAPH_PORT_NAME_FMT, 0);
snprintf(sensor->node_names.ivsc_ipu_port,
sizeof(sensor->node_names.ivsc_ipu_port),
SWNODE_GRAPH_PORT_NAME_FMT, 1);
}
}
static void ipu_bridge_init_swnode_group(struct ipu_sensor *sensor)
{
struct software_node *nodes = sensor->swnodes;
sensor->group[SWNODE_SENSOR_HID] = &nodes[SWNODE_SENSOR_HID];
sensor->group[SWNODE_SENSOR_PORT] = &nodes[SWNODE_SENSOR_PORT];
sensor->group[SWNODE_SENSOR_ENDPOINT] = &nodes[SWNODE_SENSOR_ENDPOINT];
sensor->group[SWNODE_IPU_PORT] = &nodes[SWNODE_IPU_PORT];
sensor->group[SWNODE_IPU_ENDPOINT] = &nodes[SWNODE_IPU_ENDPOINT];
if (sensor->vcm_type)
sensor->group[SWNODE_VCM] = &nodes[SWNODE_VCM];
if (sensor->csi_dev) {
sensor->group[SWNODE_IVSC_HID] =
&nodes[SWNODE_IVSC_HID];
sensor->group[SWNODE_IVSC_SENSOR_PORT] =
&nodes[SWNODE_IVSC_SENSOR_PORT];
sensor->group[SWNODE_IVSC_SENSOR_ENDPOINT] =
&nodes[SWNODE_IVSC_SENSOR_ENDPOINT];
sensor->group[SWNODE_IVSC_IPU_PORT] =
&nodes[SWNODE_IVSC_IPU_PORT];
sensor->group[SWNODE_IVSC_IPU_ENDPOINT] =
&nodes[SWNODE_IVSC_IPU_ENDPOINT];
if (sensor->vcm_type)
sensor->group[SWNODE_VCM] = &nodes[SWNODE_VCM];
} else {
if (sensor->vcm_type)
sensor->group[SWNODE_IVSC_HID] = &nodes[SWNODE_VCM];
}
}
static void ipu_bridge_create_connection_swnodes(struct ipu_bridge *bridge,
struct ipu_sensor *sensor)
{
struct ipu_node_names *names = &sensor->node_names;
struct software_node *nodes = sensor->swnodes;
ipu_bridge_init_swnode_names(sensor);
nodes[SWNODE_SENSOR_HID] = NODE_SENSOR(sensor->name,
sensor->dev_properties);
nodes[SWNODE_SENSOR_PORT] = NODE_PORT(sensor->node_names.port,
&nodes[SWNODE_SENSOR_HID]);
nodes[SWNODE_SENSOR_ENDPOINT] = NODE_ENDPOINT(
sensor->node_names.endpoint,
&nodes[SWNODE_SENSOR_PORT],
sensor->ep_properties);
nodes[SWNODE_IPU_PORT] = NODE_PORT(sensor->node_names.remote_port,
&bridge->ipu_hid_node);
nodes[SWNODE_IPU_ENDPOINT] = NODE_ENDPOINT(
sensor->node_names.endpoint,
&nodes[SWNODE_IPU_PORT],
sensor->ipu_properties);
if (sensor->csi_dev) {
snprintf(sensor->ivsc_name, sizeof(sensor->ivsc_name), "%s-%u",
acpi_device_hid(sensor->ivsc_adev), sensor->link);
nodes[SWNODE_IVSC_HID] = NODE_SENSOR(sensor->ivsc_name,
sensor->ivsc_properties);
nodes[SWNODE_IVSC_SENSOR_PORT] =
NODE_PORT(names->ivsc_sensor_port,
&nodes[SWNODE_IVSC_HID]);
nodes[SWNODE_IVSC_SENSOR_ENDPOINT] =
NODE_ENDPOINT(names->endpoint,
&nodes[SWNODE_IVSC_SENSOR_PORT],
sensor->ivsc_sensor_ep_properties);
nodes[SWNODE_IVSC_IPU_PORT] =
NODE_PORT(names->ivsc_ipu_port,
&nodes[SWNODE_IVSC_HID]);
nodes[SWNODE_IVSC_IPU_ENDPOINT] =
NODE_ENDPOINT(names->endpoint,
&nodes[SWNODE_IVSC_IPU_PORT],
sensor->ivsc_ipu_ep_properties);
}
nodes[SWNODE_VCM] = NODE_VCM(sensor->node_names.vcm);
ipu_bridge_init_swnode_group(sensor);
}
/*
* The actual instantiation must be done from a workqueue to avoid
* a deadlock on taking list_lock from v4l2-async twice.
*/
struct ipu_bridge_instantiate_vcm_work_data {
struct work_struct work;
struct device *sensor;
char name[16];
struct i2c_board_info board_info;
};
static void ipu_bridge_instantiate_vcm_work(struct work_struct *work)
{
struct ipu_bridge_instantiate_vcm_work_data *data =
container_of(work, struct ipu_bridge_instantiate_vcm_work_data,
work);
struct acpi_device *adev = ACPI_COMPANION(data->sensor);
struct i2c_client *vcm_client;
bool put_fwnode = true;
int ret;
/*
* The client may get probed before the device_link gets added below
* make sure the sensor is powered-up during probe.
*/
ret = pm_runtime_get_sync(data->sensor);
if (ret < 0) {
dev_err(data->sensor, "Error %d runtime-resuming sensor, cannot instantiate VCM\n",
ret);
goto out_pm_put;
}
/*
* Note the client is created only once and then kept around
* even after a rmmod, just like the software-nodes.
*/
vcm_client = i2c_acpi_new_device_by_fwnode(acpi_fwnode_handle(adev),
1, &data->board_info);
if (IS_ERR(vcm_client)) {
dev_err(data->sensor, "Error instantiating VCM client: %ld\n",
PTR_ERR(vcm_client));
goto out_pm_put;
}
device_link_add(&vcm_client->dev, data->sensor, DL_FLAG_PM_RUNTIME);
dev_info(data->sensor, "Instantiated %s VCM\n", data->board_info.type);
put_fwnode = false; /* Ownership has passed to the i2c-client */
out_pm_put:
pm_runtime_put(data->sensor);
put_device(data->sensor);
if (put_fwnode)
fwnode_handle_put(data->board_info.fwnode);
kfree(data);
}
int ipu_bridge_instantiate_vcm(struct device *sensor)
{
struct ipu_bridge_instantiate_vcm_work_data *data;
struct fwnode_handle *vcm_fwnode;
struct i2c_client *vcm_client;
struct acpi_device *adev;
char *sep;
adev = ACPI_COMPANION(sensor);
if (!adev)
return 0;
vcm_fwnode = fwnode_find_reference(dev_fwnode(sensor), "lens-focus", 0);
if (IS_ERR(vcm_fwnode))
return 0;
/* When reloading modules the client will already exist */
vcm_client = i2c_find_device_by_fwnode(vcm_fwnode);
if (vcm_client) {
fwnode_handle_put(vcm_fwnode);
put_device(&vcm_client->dev);
return 0;
}
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
fwnode_handle_put(vcm_fwnode);
return -ENOMEM;
}
INIT_WORK(&data->work, ipu_bridge_instantiate_vcm_work);
data->sensor = get_device(sensor);
snprintf(data->name, sizeof(data->name), "%s-VCM",
acpi_dev_name(adev));
data->board_info.dev_name = data->name;
data->board_info.fwnode = vcm_fwnode;
snprintf(data->board_info.type, sizeof(data->board_info.type),
"%pfwP", vcm_fwnode);
/* Strip "-<link>" postfix */
sep = strchrnul(data->board_info.type, '-');
*sep = 0;
queue_work(system_long_wq, &data->work);
return 0;
}
EXPORT_SYMBOL_NS_GPL(ipu_bridge_instantiate_vcm, INTEL_IPU_BRIDGE);
static int ipu_bridge_instantiate_ivsc(struct ipu_sensor *sensor)
{
struct fwnode_handle *fwnode;
if (!sensor->csi_dev)
return 0;
fwnode = software_node_fwnode(&sensor->swnodes[SWNODE_IVSC_HID]);
if (!fwnode)
return -ENODEV;
set_secondary_fwnode(sensor->csi_dev, fwnode);
return 0;
}
static void ipu_bridge_unregister_sensors(struct ipu_bridge *bridge)
{
struct ipu_sensor *sensor;
unsigned int i;
for (i = 0; i < bridge->n_sensors; i++) {
sensor = &bridge->sensors[i];
software_node_unregister_node_group(sensor->group);
acpi_dev_put(sensor->adev);
put_device(sensor->csi_dev);
acpi_dev_put(sensor->ivsc_adev);
}
}
static int ipu_bridge_connect_sensor(const struct ipu_sensor_config *cfg,
struct ipu_bridge *bridge)
{
struct fwnode_handle *fwnode, *primary;
struct ipu_sensor *sensor;
struct acpi_device *adev;
int ret;
for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
if (!adev->status.enabled)
continue;
if (bridge->n_sensors >= IPU_MAX_PORTS) {
acpi_dev_put(adev);
dev_err(bridge->dev, "Exceeded available IPU ports\n");
return -EINVAL;
}
sensor = &bridge->sensors[bridge->n_sensors];
ret = bridge->parse_sensor_fwnode(adev, sensor);
if (ret)
goto err_put_adev;
snprintf(sensor->name, sizeof(sensor->name), "%s-%u",
cfg->hid, sensor->link);
ret = ipu_bridge_check_ivsc_dev(sensor, adev);
if (ret)
goto err_put_adev;
ipu_bridge_create_fwnode_properties(sensor, bridge, cfg);
ipu_bridge_create_connection_swnodes(bridge, sensor);
ret = software_node_register_node_group(sensor->group);
if (ret)
goto err_put_ivsc;
fwnode = software_node_fwnode(&sensor->swnodes[
SWNODE_SENSOR_HID]);
if (!fwnode) {
ret = -ENODEV;
goto err_free_swnodes;
}
sensor->adev = acpi_dev_get(adev);
primary = acpi_fwnode_handle(adev);
primary->secondary = fwnode;
ret = ipu_bridge_instantiate_ivsc(sensor);
if (ret)
goto err_free_swnodes;
dev_info(bridge->dev, "Found supported sensor %s\n",
acpi_dev_name(adev));
bridge->n_sensors++;
}
return 0;
err_free_swnodes:
software_node_unregister_node_group(sensor->group);
err_put_ivsc:
put_device(sensor->csi_dev);
acpi_dev_put(sensor->ivsc_adev);
err_put_adev:
acpi_dev_put(adev);
return ret;
}
static int ipu_bridge_connect_sensors(struct ipu_bridge *bridge)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
const struct ipu_sensor_config *cfg =
&ipu_supported_sensors[i];
ret = ipu_bridge_connect_sensor(cfg, bridge);
if (ret)
goto err_unregister_sensors;
}
return 0;
err_unregister_sensors:
ipu_bridge_unregister_sensors(bridge);
return ret;
}
static int ipu_bridge_ivsc_is_ready(void)
{
struct acpi_device *sensor_adev, *adev;
struct device *csi_dev;
bool ready = true;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
const struct ipu_sensor_config *cfg =
&ipu_supported_sensors[i];
for_each_acpi_dev_match(sensor_adev, cfg->hid, NULL, -1) {
if (!sensor_adev->status.enabled)
continue;
adev = ipu_bridge_get_ivsc_acpi_dev(sensor_adev);
if (!adev)
continue;
csi_dev = ipu_bridge_get_ivsc_csi_dev(adev);
if (!csi_dev)
ready = false;
put_device(csi_dev);
acpi_dev_put(adev);
}
}
return ready;
}
int ipu_bridge_init(struct device *dev,
ipu_parse_sensor_fwnode_t parse_sensor_fwnode)
{
struct fwnode_handle *fwnode;
struct ipu_bridge *bridge;
unsigned int i;
int ret;
if (!ipu_bridge_ivsc_is_ready())
return -EPROBE_DEFER;
bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
if (!bridge)
return -ENOMEM;
strscpy(bridge->ipu_node_name, IPU_HID,
sizeof(bridge->ipu_node_name));
bridge->ipu_hid_node.name = bridge->ipu_node_name;
bridge->dev = dev;
bridge->parse_sensor_fwnode = parse_sensor_fwnode;
ret = software_node_register(&bridge->ipu_hid_node);
if (ret < 0) {
dev_err(dev, "Failed to register the IPU HID node\n");
goto err_free_bridge;
}
/*
* Map the lane arrangement, which is fixed for the IPU3 (meaning we
* only need one, rather than one per sensor). We include it as a
* member of the struct ipu_bridge rather than a global variable so
* that it survives if the module is unloaded along with the rest of
* the struct.
*/
for (i = 0; i < IPU_MAX_LANES; i++)
bridge->data_lanes[i] = i + 1;
ret = ipu_bridge_connect_sensors(bridge);
if (ret || bridge->n_sensors == 0)
goto err_unregister_ipu;
dev_info(dev, "Connected %d cameras\n", bridge->n_sensors);
fwnode = software_node_fwnode(&bridge->ipu_hid_node);
if (!fwnode) {
dev_err(dev, "Error getting fwnode from ipu software_node\n");
ret = -ENODEV;
goto err_unregister_sensors;
}
set_secondary_fwnode(dev, fwnode);
return 0;
err_unregister_sensors:
ipu_bridge_unregister_sensors(bridge);
err_unregister_ipu:
software_node_unregister(&bridge->ipu_hid_node);
err_free_bridge:
kfree(bridge);
return ret;
}
EXPORT_SYMBOL_NS_GPL(ipu_bridge_init, INTEL_IPU_BRIDGE);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Intel IPU Sensors Bridge driver");