mirror of
https://github.com/lkl/linux.git
synced 2025-12-19 16:13:19 +09:00
In an effort to improve performance of the REFCOUNT_FULL implementation, move the bulk of its functions into linux/refcount.h. This allows them to be inlined in the same way as if they had been provided via CONFIG_ARCH_HAS_REFCOUNT. Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Hanjun Guo <guohanjun@huawei.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191121115902.2551-5-will@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
335 lines
9.7 KiB
C
335 lines
9.7 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_REFCOUNT_H
|
|
#define _LINUX_REFCOUNT_H
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/limits.h>
|
|
#include <linux/spinlock_types.h>
|
|
|
|
struct mutex;
|
|
|
|
/**
|
|
* struct refcount_t - variant of atomic_t specialized for reference counts
|
|
* @refs: atomic_t counter field
|
|
*
|
|
* The counter saturates at REFCOUNT_SATURATED and will not move once
|
|
* there. This avoids wrapping the counter and causing 'spurious'
|
|
* use-after-free bugs.
|
|
*/
|
|
typedef struct refcount_struct {
|
|
atomic_t refs;
|
|
} refcount_t;
|
|
|
|
#define REFCOUNT_INIT(n) { .refs = ATOMIC_INIT(n), }
|
|
|
|
/**
|
|
* refcount_set - set a refcount's value
|
|
* @r: the refcount
|
|
* @n: value to which the refcount will be set
|
|
*/
|
|
static inline void refcount_set(refcount_t *r, int n)
|
|
{
|
|
atomic_set(&r->refs, n);
|
|
}
|
|
|
|
/**
|
|
* refcount_read - get a refcount's value
|
|
* @r: the refcount
|
|
*
|
|
* Return: the refcount's value
|
|
*/
|
|
static inline unsigned int refcount_read(const refcount_t *r)
|
|
{
|
|
return atomic_read(&r->refs);
|
|
}
|
|
|
|
#ifdef CONFIG_REFCOUNT_FULL
|
|
#include <linux/bug.h>
|
|
|
|
#define REFCOUNT_MAX (UINT_MAX - 1)
|
|
#define REFCOUNT_SATURATED UINT_MAX
|
|
|
|
/*
|
|
* Variant of atomic_t specialized for reference counts.
|
|
*
|
|
* The interface matches the atomic_t interface (to aid in porting) but only
|
|
* provides the few functions one should use for reference counting.
|
|
*
|
|
* It differs in that the counter saturates at REFCOUNT_SATURATED and will not
|
|
* move once there. This avoids wrapping the counter and causing 'spurious'
|
|
* use-after-free issues.
|
|
*
|
|
* Memory ordering rules are slightly relaxed wrt regular atomic_t functions
|
|
* and provide only what is strictly required for refcounts.
|
|
*
|
|
* The increments are fully relaxed; these will not provide ordering. The
|
|
* rationale is that whatever is used to obtain the object we're increasing the
|
|
* reference count on will provide the ordering. For locked data structures,
|
|
* its the lock acquire, for RCU/lockless data structures its the dependent
|
|
* load.
|
|
*
|
|
* Do note that inc_not_zero() provides a control dependency which will order
|
|
* future stores against the inc, this ensures we'll never modify the object
|
|
* if we did not in fact acquire a reference.
|
|
*
|
|
* The decrements will provide release order, such that all the prior loads and
|
|
* stores will be issued before, it also provides a control dependency, which
|
|
* will order us against the subsequent free().
|
|
*
|
|
* The control dependency is against the load of the cmpxchg (ll/sc) that
|
|
* succeeded. This means the stores aren't fully ordered, but this is fine
|
|
* because the 1->0 transition indicates no concurrency.
|
|
*
|
|
* Note that the allocator is responsible for ordering things between free()
|
|
* and alloc().
|
|
*
|
|
* The decrements dec_and_test() and sub_and_test() also provide acquire
|
|
* ordering on success.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* refcount_add_not_zero - add a value to a refcount unless it is 0
|
|
* @i: the value to add to the refcount
|
|
* @r: the refcount
|
|
*
|
|
* Will saturate at REFCOUNT_SATURATED and WARN.
|
|
*
|
|
* Provides no memory ordering, it is assumed the caller has guaranteed the
|
|
* object memory to be stable (RCU, etc.). It does provide a control dependency
|
|
* and thereby orders future stores. See the comment on top.
|
|
*
|
|
* Use of this function is not recommended for the normal reference counting
|
|
* use case in which references are taken and released one at a time. In these
|
|
* cases, refcount_inc(), or one of its variants, should instead be used to
|
|
* increment a reference count.
|
|
*
|
|
* Return: false if the passed refcount is 0, true otherwise
|
|
*/
|
|
static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r)
|
|
{
|
|
unsigned int new, val = atomic_read(&r->refs);
|
|
|
|
do {
|
|
if (!val)
|
|
return false;
|
|
|
|
if (unlikely(val == REFCOUNT_SATURATED))
|
|
return true;
|
|
|
|
new = val + i;
|
|
if (new < val)
|
|
new = REFCOUNT_SATURATED;
|
|
|
|
} while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new));
|
|
|
|
WARN_ONCE(new == REFCOUNT_SATURATED,
|
|
"refcount_t: saturated; leaking memory.\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* refcount_add - add a value to a refcount
|
|
* @i: the value to add to the refcount
|
|
* @r: the refcount
|
|
*
|
|
* Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN.
|
|
*
|
|
* Provides no memory ordering, it is assumed the caller has guaranteed the
|
|
* object memory to be stable (RCU, etc.). It does provide a control dependency
|
|
* and thereby orders future stores. See the comment on top.
|
|
*
|
|
* Use of this function is not recommended for the normal reference counting
|
|
* use case in which references are taken and released one at a time. In these
|
|
* cases, refcount_inc(), or one of its variants, should instead be used to
|
|
* increment a reference count.
|
|
*/
|
|
static inline void refcount_add(int i, refcount_t *r)
|
|
{
|
|
WARN_ONCE(!refcount_add_not_zero(i, r), "refcount_t: addition on 0; use-after-free.\n");
|
|
}
|
|
|
|
/**
|
|
* refcount_inc_not_zero - increment a refcount unless it is 0
|
|
* @r: the refcount to increment
|
|
*
|
|
* Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED
|
|
* and WARN.
|
|
*
|
|
* Provides no memory ordering, it is assumed the caller has guaranteed the
|
|
* object memory to be stable (RCU, etc.). It does provide a control dependency
|
|
* and thereby orders future stores. See the comment on top.
|
|
*
|
|
* Return: true if the increment was successful, false otherwise
|
|
*/
|
|
static inline __must_check bool refcount_inc_not_zero(refcount_t *r)
|
|
{
|
|
unsigned int new, val = atomic_read(&r->refs);
|
|
|
|
do {
|
|
new = val + 1;
|
|
|
|
if (!val)
|
|
return false;
|
|
|
|
if (unlikely(!new))
|
|
return true;
|
|
|
|
} while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new));
|
|
|
|
WARN_ONCE(new == REFCOUNT_SATURATED,
|
|
"refcount_t: saturated; leaking memory.\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* refcount_inc - increment a refcount
|
|
* @r: the refcount to increment
|
|
*
|
|
* Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN.
|
|
*
|
|
* Provides no memory ordering, it is assumed the caller already has a
|
|
* reference on the object.
|
|
*
|
|
* Will WARN if the refcount is 0, as this represents a possible use-after-free
|
|
* condition.
|
|
*/
|
|
static inline void refcount_inc(refcount_t *r)
|
|
{
|
|
WARN_ONCE(!refcount_inc_not_zero(r), "refcount_t: increment on 0; use-after-free.\n");
|
|
}
|
|
|
|
/**
|
|
* refcount_sub_and_test - subtract from a refcount and test if it is 0
|
|
* @i: amount to subtract from the refcount
|
|
* @r: the refcount
|
|
*
|
|
* Similar to atomic_dec_and_test(), but it will WARN, return false and
|
|
* ultimately leak on underflow and will fail to decrement when saturated
|
|
* at REFCOUNT_SATURATED.
|
|
*
|
|
* Provides release memory ordering, such that prior loads and stores are done
|
|
* before, and provides an acquire ordering on success such that free()
|
|
* must come after.
|
|
*
|
|
* Use of this function is not recommended for the normal reference counting
|
|
* use case in which references are taken and released one at a time. In these
|
|
* cases, refcount_dec(), or one of its variants, should instead be used to
|
|
* decrement a reference count.
|
|
*
|
|
* Return: true if the resulting refcount is 0, false otherwise
|
|
*/
|
|
static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r)
|
|
{
|
|
unsigned int new, val = atomic_read(&r->refs);
|
|
|
|
do {
|
|
if (unlikely(val == REFCOUNT_SATURATED))
|
|
return false;
|
|
|
|
new = val - i;
|
|
if (new > val) {
|
|
WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n");
|
|
return false;
|
|
}
|
|
|
|
} while (!atomic_try_cmpxchg_release(&r->refs, &val, new));
|
|
|
|
if (!new) {
|
|
smp_acquire__after_ctrl_dep();
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
}
|
|
|
|
/**
|
|
* refcount_dec_and_test - decrement a refcount and test if it is 0
|
|
* @r: the refcount
|
|
*
|
|
* Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
|
|
* decrement when saturated at REFCOUNT_SATURATED.
|
|
*
|
|
* Provides release memory ordering, such that prior loads and stores are done
|
|
* before, and provides an acquire ordering on success such that free()
|
|
* must come after.
|
|
*
|
|
* Return: true if the resulting refcount is 0, false otherwise
|
|
*/
|
|
static inline __must_check bool refcount_dec_and_test(refcount_t *r)
|
|
{
|
|
return refcount_sub_and_test(1, r);
|
|
}
|
|
|
|
/**
|
|
* refcount_dec - decrement a refcount
|
|
* @r: the refcount
|
|
*
|
|
* Similar to atomic_dec(), it will WARN on underflow and fail to decrement
|
|
* when saturated at REFCOUNT_SATURATED.
|
|
*
|
|
* Provides release memory ordering, such that prior loads and stores are done
|
|
* before.
|
|
*/
|
|
static inline void refcount_dec(refcount_t *r)
|
|
{
|
|
WARN_ONCE(refcount_dec_and_test(r), "refcount_t: decrement hit 0; leaking memory.\n");
|
|
}
|
|
|
|
#else /* CONFIG_REFCOUNT_FULL */
|
|
|
|
#define REFCOUNT_MAX INT_MAX
|
|
#define REFCOUNT_SATURATED (INT_MIN / 2)
|
|
|
|
# ifdef CONFIG_ARCH_HAS_REFCOUNT
|
|
# include <asm/refcount.h>
|
|
# else
|
|
static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r)
|
|
{
|
|
return atomic_add_unless(&r->refs, i, 0);
|
|
}
|
|
|
|
static inline void refcount_add(int i, refcount_t *r)
|
|
{
|
|
atomic_add(i, &r->refs);
|
|
}
|
|
|
|
static inline __must_check bool refcount_inc_not_zero(refcount_t *r)
|
|
{
|
|
return atomic_add_unless(&r->refs, 1, 0);
|
|
}
|
|
|
|
static inline void refcount_inc(refcount_t *r)
|
|
{
|
|
atomic_inc(&r->refs);
|
|
}
|
|
|
|
static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r)
|
|
{
|
|
return atomic_sub_and_test(i, &r->refs);
|
|
}
|
|
|
|
static inline __must_check bool refcount_dec_and_test(refcount_t *r)
|
|
{
|
|
return atomic_dec_and_test(&r->refs);
|
|
}
|
|
|
|
static inline void refcount_dec(refcount_t *r)
|
|
{
|
|
atomic_dec(&r->refs);
|
|
}
|
|
# endif /* !CONFIG_ARCH_HAS_REFCOUNT */
|
|
#endif /* !CONFIG_REFCOUNT_FULL */
|
|
|
|
extern __must_check bool refcount_dec_if_one(refcount_t *r);
|
|
extern __must_check bool refcount_dec_not_one(refcount_t *r);
|
|
extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock);
|
|
extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock);
|
|
extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r,
|
|
spinlock_t *lock,
|
|
unsigned long *flags);
|
|
#endif /* _LINUX_REFCOUNT_H */
|