Files
lkl_linux/arch/arm64/kvm/hyp/pgtable.c
Raghavendra Rao Ananta 7657ea920c KVM: arm64: Use TLBI range-based instructions for unmap
The current implementation of the stage-2 unmap walker traverses
the given range and, as a part of break-before-make, performs
TLB invalidations with a DSB for every PTE. A multitude of this
combination could cause a performance bottleneck on some systems.

Hence, if the system supports FEAT_TLBIRANGE, defer the TLB
invalidations until the entire walk is finished, and then
use range-based instructions to invalidate the TLBs in one go.
Condition deferred TLB invalidation on the system supporting FWB,
as the optimization is entirely pointless when the unmap walker
needs to perform CMOs.

Rename stage2_put_pte() to stage2_unmap_put_pte() as the function
now serves the stage-2 unmap walker specifically, rather than
acting generic.

Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230811045127.3308641-15-rananta@google.com
2023-08-17 09:40:35 +01:00

1601 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
* No bombay mix was harmed in the writing of this file.
*
* Copyright (C) 2020 Google LLC
* Author: Will Deacon <will@kernel.org>
*/
#include <linux/bitfield.h>
#include <asm/kvm_pgtable.h>
#include <asm/stage2_pgtable.h>
#define KVM_PTE_TYPE BIT(1)
#define KVM_PTE_TYPE_BLOCK 0
#define KVM_PTE_TYPE_PAGE 1
#define KVM_PTE_TYPE_TABLE 1
#define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
#define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO \
({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW \
({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
#define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
#define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
#define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
#define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 50)
#define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
#define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
#define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
#define KVM_PTE_LEAF_ATTR_HI_S1_GP BIT(50)
#define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
KVM_PTE_LEAF_ATTR_HI_S2_XN)
#define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
#define KVM_MAX_OWNER_ID 1
/*
* Used to indicate a pte for which a 'break-before-make' sequence is in
* progress.
*/
#define KVM_INVALID_PTE_LOCKED BIT(10)
struct kvm_pgtable_walk_data {
struct kvm_pgtable_walker *walker;
const u64 start;
u64 addr;
const u64 end;
};
static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
{
return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
}
static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
{
return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
}
static bool kvm_phys_is_valid(u64 phys)
{
return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
}
static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
{
u64 granule = kvm_granule_size(ctx->level);
if (!kvm_level_supports_block_mapping(ctx->level))
return false;
if (granule > (ctx->end - ctx->addr))
return false;
if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
return false;
return IS_ALIGNED(ctx->addr, granule);
}
static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
{
u64 shift = kvm_granule_shift(level);
u64 mask = BIT(PAGE_SHIFT - 3) - 1;
return (data->addr >> shift) & mask;
}
static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
{
u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
u64 mask = BIT(pgt->ia_bits) - 1;
return (addr & mask) >> shift;
}
static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
{
struct kvm_pgtable pgt = {
.ia_bits = ia_bits,
.start_level = start_level,
};
return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
}
static bool kvm_pte_table(kvm_pte_t pte, u32 level)
{
if (level == KVM_PGTABLE_MAX_LEVELS - 1)
return false;
if (!kvm_pte_valid(pte))
return false;
return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
}
static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
{
return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
}
static void kvm_clear_pte(kvm_pte_t *ptep)
{
WRITE_ONCE(*ptep, 0);
}
static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
{
kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
pte |= KVM_PTE_VALID;
return pte;
}
static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
{
kvm_pte_t pte = kvm_phys_to_pte(pa);
u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
KVM_PTE_TYPE_BLOCK;
pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
pte |= FIELD_PREP(KVM_PTE_TYPE, type);
pte |= KVM_PTE_VALID;
return pte;
}
static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
{
return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
}
static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable_walker *walker = data->walker;
/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
return walker->cb(ctx, visit);
}
static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
int r)
{
/*
* Visitor callbacks return EAGAIN when the conditions that led to a
* fault are no longer reflected in the page tables due to a race to
* update a PTE. In the context of a fault handler this is interpreted
* as a signal to retry guest execution.
*
* Ignore the return code altogether for walkers outside a fault handler
* (e.g. write protecting a range of memory) and chug along with the
* page table walk.
*/
if (r == -EAGAIN)
return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
return !r;
}
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level);
static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
struct kvm_pgtable_mm_ops *mm_ops,
kvm_pteref_t pteref, u32 level)
{
enum kvm_pgtable_walk_flags flags = data->walker->flags;
kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
struct kvm_pgtable_visit_ctx ctx = {
.ptep = ptep,
.old = READ_ONCE(*ptep),
.arg = data->walker->arg,
.mm_ops = mm_ops,
.start = data->start,
.addr = data->addr,
.end = data->end,
.level = level,
.flags = flags,
};
int ret = 0;
bool reload = false;
kvm_pteref_t childp;
bool table = kvm_pte_table(ctx.old, level);
if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
reload = true;
}
if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
reload = true;
}
/*
* Reload the page table after invoking the walker callback for leaf
* entries or after pre-order traversal, to allow the walker to descend
* into a newly installed or replaced table.
*/
if (reload) {
ctx.old = READ_ONCE(*ptep);
table = kvm_pte_table(ctx.old, level);
}
if (!kvm_pgtable_walk_continue(data->walker, ret))
goto out;
if (!table) {
data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
data->addr += kvm_granule_size(level);
goto out;
}
childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
if (!kvm_pgtable_walk_continue(data->walker, ret))
goto out;
if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
out:
if (kvm_pgtable_walk_continue(data->walker, ret))
return 0;
return ret;
}
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level)
{
u32 idx;
int ret = 0;
if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
return -EINVAL;
for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
kvm_pteref_t pteref = &pgtable[idx];
if (data->addr >= data->end)
break;
ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
if (ret)
break;
}
return ret;
}
static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
{
u32 idx;
int ret = 0;
u64 limit = BIT(pgt->ia_bits);
if (data->addr > limit || data->end > limit)
return -ERANGE;
if (!pgt->pgd)
return -EINVAL;
for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
if (ret)
break;
}
return ret;
}
int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
struct kvm_pgtable_walker *walker)
{
struct kvm_pgtable_walk_data walk_data = {
.start = ALIGN_DOWN(addr, PAGE_SIZE),
.addr = ALIGN_DOWN(addr, PAGE_SIZE),
.end = PAGE_ALIGN(walk_data.addr + size),
.walker = walker,
};
int r;
r = kvm_pgtable_walk_begin(walker);
if (r)
return r;
r = _kvm_pgtable_walk(pgt, &walk_data);
kvm_pgtable_walk_end(walker);
return r;
}
struct leaf_walk_data {
kvm_pte_t pte;
u32 level;
};
static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct leaf_walk_data *data = ctx->arg;
data->pte = ctx->old;
data->level = ctx->level;
return 0;
}
int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
kvm_pte_t *ptep, u32 *level)
{
struct leaf_walk_data data;
struct kvm_pgtable_walker walker = {
.cb = leaf_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = &data,
};
int ret;
ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
PAGE_SIZE, &walker);
if (!ret) {
if (ptep)
*ptep = data.pte;
if (level)
*level = data.level;
}
return ret;
}
struct hyp_map_data {
const u64 phys;
kvm_pte_t attr;
};
static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
{
bool device = prot & KVM_PGTABLE_PROT_DEVICE;
u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
if (!(prot & KVM_PGTABLE_PROT_R))
return -EINVAL;
if (prot & KVM_PGTABLE_PROT_X) {
if (prot & KVM_PGTABLE_PROT_W)
return -EINVAL;
if (device)
return -EINVAL;
if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) && system_supports_bti())
attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
} else {
attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
}
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
*ptep = attr;
return 0;
}
enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
{
enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
u32 ap;
if (!kvm_pte_valid(pte))
return prot;
if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
prot |= KVM_PGTABLE_PROT_X;
ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
prot |= KVM_PGTABLE_PROT_R;
else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
prot |= KVM_PGTABLE_PROT_RW;
return prot;
}
static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
struct hyp_map_data *data)
{
u64 phys = data->phys + (ctx->addr - ctx->start);
kvm_pte_t new;
if (!kvm_block_mapping_supported(ctx, phys))
return false;
new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
if (ctx->old == new)
return true;
if (!kvm_pte_valid(ctx->old))
ctx->mm_ops->get_page(ctx->ptep);
else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
return false;
smp_store_release(ctx->ptep, new);
return true;
}
static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
kvm_pte_t *childp, new;
struct hyp_map_data *data = ctx->arg;
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (hyp_map_walker_try_leaf(ctx, data))
return 0;
if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
return -EINVAL;
childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
if (!childp)
return -ENOMEM;
new = kvm_init_table_pte(childp, mm_ops);
mm_ops->get_page(ctx->ptep);
smp_store_release(ctx->ptep, new);
return 0;
}
int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
enum kvm_pgtable_prot prot)
{
int ret;
struct hyp_map_data map_data = {
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
};
struct kvm_pgtable_walker walker = {
.cb = hyp_map_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = &map_data,
};
ret = hyp_set_prot_attr(prot, &map_data.attr);
if (ret)
return ret;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
dsb(ishst);
isb();
return ret;
}
static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
kvm_pte_t *childp = NULL;
u64 granule = kvm_granule_size(ctx->level);
u64 *unmapped = ctx->arg;
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (!kvm_pte_valid(ctx->old))
return -EINVAL;
if (kvm_pte_table(ctx->old, ctx->level)) {
childp = kvm_pte_follow(ctx->old, mm_ops);
if (mm_ops->page_count(childp) != 1)
return 0;
kvm_clear_pte(ctx->ptep);
dsb(ishst);
__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
} else {
if (ctx->end - ctx->addr < granule)
return -EINVAL;
kvm_clear_pte(ctx->ptep);
dsb(ishst);
__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
*unmapped += granule;
}
dsb(ish);
isb();
mm_ops->put_page(ctx->ptep);
if (childp)
mm_ops->put_page(childp);
return 0;
}
u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
u64 unmapped = 0;
struct kvm_pgtable_walker walker = {
.cb = hyp_unmap_walker,
.arg = &unmapped,
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
};
if (!pgt->mm_ops->page_count)
return 0;
kvm_pgtable_walk(pgt, addr, size, &walker);
return unmapped;
}
int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
struct kvm_pgtable_mm_ops *mm_ops)
{
u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
if (!pgt->pgd)
return -ENOMEM;
pgt->ia_bits = va_bits;
pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels;
pgt->mm_ops = mm_ops;
pgt->mmu = NULL;
pgt->force_pte_cb = NULL;
return 0;
}
static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (!kvm_pte_valid(ctx->old))
return 0;
mm_ops->put_page(ctx->ptep);
if (kvm_pte_table(ctx->old, ctx->level))
mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
return 0;
}
void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
{
struct kvm_pgtable_walker walker = {
.cb = hyp_free_walker,
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
};
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
pgt->pgd = NULL;
}
struct stage2_map_data {
const u64 phys;
kvm_pte_t attr;
u8 owner_id;
kvm_pte_t *anchor;
kvm_pte_t *childp;
struct kvm_s2_mmu *mmu;
void *memcache;
/* Force mappings to page granularity */
bool force_pte;
};
u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
{
u64 vtcr = VTCR_EL2_FLAGS;
u8 lvls;
vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
vtcr |= VTCR_EL2_T0SZ(phys_shift);
/*
* Use a minimum 2 level page table to prevent splitting
* host PMD huge pages at stage2.
*/
lvls = stage2_pgtable_levels(phys_shift);
if (lvls < 2)
lvls = 2;
vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
#ifdef CONFIG_ARM64_HW_AFDBM
/*
* Enable the Hardware Access Flag management, unconditionally
* on all CPUs. In systems that have asymmetric support for the feature
* this allows KVM to leverage hardware support on the subset of cores
* that implement the feature.
*
* The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
* hardware) on implementations that do not advertise support for the
* feature. As such, setting HA unconditionally is safe, unless you
* happen to be running on a design that has unadvertised support for
* HAFDBS. Here be dragons.
*/
if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
vtcr |= VTCR_EL2_HA;
#endif /* CONFIG_ARM64_HW_AFDBM */
/* Set the vmid bits */
vtcr |= (get_vmid_bits(mmfr1) == 16) ?
VTCR_EL2_VS_16BIT :
VTCR_EL2_VS_8BIT;
return vtcr;
}
static bool stage2_has_fwb(struct kvm_pgtable *pgt)
{
if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
return false;
return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
}
void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
phys_addr_t addr, size_t size)
{
unsigned long pages, inval_pages;
if (!system_supports_tlb_range()) {
kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
return;
}
pages = size >> PAGE_SHIFT;
while (pages > 0) {
inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
addr += inval_pages << PAGE_SHIFT;
pages -= inval_pages;
}
}
#define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
kvm_pte_t *ptep)
{
bool device = prot & KVM_PGTABLE_PROT_DEVICE;
kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
KVM_S2_MEMATTR(pgt, NORMAL);
u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
if (!(prot & KVM_PGTABLE_PROT_X))
attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
else if (device)
return -EINVAL;
if (prot & KVM_PGTABLE_PROT_R)
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
if (prot & KVM_PGTABLE_PROT_W)
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
*ptep = attr;
return 0;
}
enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
{
enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
if (!kvm_pte_valid(pte))
return prot;
if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
prot |= KVM_PGTABLE_PROT_R;
if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
prot |= KVM_PGTABLE_PROT_W;
if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
prot |= KVM_PGTABLE_PROT_X;
return prot;
}
static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
{
if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
return true;
return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
}
static bool stage2_pte_is_counted(kvm_pte_t pte)
{
/*
* The refcount tracks valid entries as well as invalid entries if they
* encode ownership of a page to another entity than the page-table
* owner, whose id is 0.
*/
return !!pte;
}
static bool stage2_pte_is_locked(kvm_pte_t pte)
{
return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
}
static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
{
if (!kvm_pgtable_walk_shared(ctx)) {
WRITE_ONCE(*ctx->ptep, new);
return true;
}
return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
}
/**
* stage2_try_break_pte() - Invalidates a pte according to the
* 'break-before-make' requirements of the
* architecture.
*
* @ctx: context of the visited pte.
* @mmu: stage-2 mmu
*
* Returns: true if the pte was successfully broken.
*
* If the removed pte was valid, performs the necessary serialization and TLB
* invalidation for the old value. For counted ptes, drops the reference count
* on the containing table page.
*/
static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
struct kvm_s2_mmu *mmu)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (stage2_pte_is_locked(ctx->old)) {
/*
* Should never occur if this walker has exclusive access to the
* page tables.
*/
WARN_ON(!kvm_pgtable_walk_shared(ctx));
return false;
}
if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
return false;
if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
/*
* Perform the appropriate TLB invalidation based on the
* evicted pte value (if any).
*/
if (kvm_pte_table(ctx->old, ctx->level))
kvm_tlb_flush_vmid_range(mmu, ctx->addr,
kvm_granule_size(ctx->level));
else if (kvm_pte_valid(ctx->old))
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
ctx->addr, ctx->level);
}
if (stage2_pte_is_counted(ctx->old))
mm_ops->put_page(ctx->ptep);
return true;
}
static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
if (stage2_pte_is_counted(new))
mm_ops->get_page(ctx->ptep);
smp_store_release(ctx->ptep, new);
}
static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
{
/*
* If FEAT_TLBIRANGE is implemented, defer the individual
* TLB invalidations until the entire walk is finished, and
* then use the range-based TLBI instructions to do the
* invalidations. Condition deferred TLB invalidation on the
* system supporting FWB as the optimization is entirely
* pointless when the unmap walker needs to perform CMOs.
*/
return system_supports_tlb_range() && stage2_has_fwb(pgt);
}
static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
struct kvm_s2_mmu *mmu,
struct kvm_pgtable_mm_ops *mm_ops)
{
struct kvm_pgtable *pgt = ctx->arg;
/*
* Clear the existing PTE, and perform break-before-make if it was
* valid. Depending on the system support, defer the TLB maintenance
* for the same until the entire unmap walk is completed.
*/
if (kvm_pte_valid(ctx->old)) {
kvm_clear_pte(ctx->ptep);
if (!stage2_unmap_defer_tlb_flush(pgt))
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
ctx->addr, ctx->level);
}
mm_ops->put_page(ctx->ptep);
}
static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
{
u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
}
static bool stage2_pte_executable(kvm_pte_t pte)
{
return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
}
static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
const struct stage2_map_data *data)
{
u64 phys = data->phys;
/*
* Stage-2 walks to update ownership data are communicated to the map
* walker using an invalid PA. Avoid offsetting an already invalid PA,
* which could overflow and make the address valid again.
*/
if (!kvm_phys_is_valid(phys))
return phys;
/*
* Otherwise, work out the correct PA based on how far the walk has
* gotten.
*/
return phys + (ctx->addr - ctx->start);
}
static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
struct stage2_map_data *data)
{
u64 phys = stage2_map_walker_phys_addr(ctx, data);
if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1)))
return false;
return kvm_block_mapping_supported(ctx, phys);
}
static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
struct stage2_map_data *data)
{
kvm_pte_t new;
u64 phys = stage2_map_walker_phys_addr(ctx, data);
u64 granule = kvm_granule_size(ctx->level);
struct kvm_pgtable *pgt = data->mmu->pgt;
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (!stage2_leaf_mapping_allowed(ctx, data))
return -E2BIG;
if (kvm_phys_is_valid(phys))
new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
else
new = kvm_init_invalid_leaf_owner(data->owner_id);
/*
* Skip updating the PTE if we are trying to recreate the exact
* same mapping or only change the access permissions. Instead,
* the vCPU will exit one more time from guest if still needed
* and then go through the path of relaxing permissions.
*/
if (!stage2_pte_needs_update(ctx->old, new))
return -EAGAIN;
if (!stage2_try_break_pte(ctx, data->mmu))
return -EAGAIN;
/* Perform CMOs before installation of the guest stage-2 PTE */
if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
stage2_pte_cacheable(pgt, new))
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
granule);
if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
stage2_pte_executable(new))
mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
stage2_make_pte(ctx, new);
return 0;
}
static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
struct stage2_map_data *data)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
int ret;
if (!stage2_leaf_mapping_allowed(ctx, data))
return 0;
ret = stage2_map_walker_try_leaf(ctx, data);
if (ret)
return ret;
mm_ops->free_unlinked_table(childp, ctx->level);
return 0;
}
static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
struct stage2_map_data *data)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
kvm_pte_t *childp, new;
int ret;
ret = stage2_map_walker_try_leaf(ctx, data);
if (ret != -E2BIG)
return ret;
if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
return -EINVAL;
if (!data->memcache)
return -ENOMEM;
childp = mm_ops->zalloc_page(data->memcache);
if (!childp)
return -ENOMEM;
if (!stage2_try_break_pte(ctx, data->mmu)) {
mm_ops->put_page(childp);
return -EAGAIN;
}
/*
* If we've run into an existing block mapping then replace it with
* a table. Accesses beyond 'end' that fall within the new table
* will be mapped lazily.
*/
new = kvm_init_table_pte(childp, mm_ops);
stage2_make_pte(ctx, new);
return 0;
}
/*
* The TABLE_PRE callback runs for table entries on the way down, looking
* for table entries which we could conceivably replace with a block entry
* for this mapping. If it finds one it replaces the entry and calls
* kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
*
* Otherwise, the LEAF callback performs the mapping at the existing leaves
* instead.
*/
static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct stage2_map_data *data = ctx->arg;
switch (visit) {
case KVM_PGTABLE_WALK_TABLE_PRE:
return stage2_map_walk_table_pre(ctx, data);
case KVM_PGTABLE_WALK_LEAF:
return stage2_map_walk_leaf(ctx, data);
default:
return -EINVAL;
}
}
int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
u64 phys, enum kvm_pgtable_prot prot,
void *mc, enum kvm_pgtable_walk_flags flags)
{
int ret;
struct stage2_map_data map_data = {
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
.mmu = pgt->mmu,
.memcache = mc,
.force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
};
struct kvm_pgtable_walker walker = {
.cb = stage2_map_walker,
.flags = flags |
KVM_PGTABLE_WALK_TABLE_PRE |
KVM_PGTABLE_WALK_LEAF,
.arg = &map_data,
};
if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
return -EINVAL;
ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
if (ret)
return ret;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
dsb(ishst);
return ret;
}
int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
void *mc, u8 owner_id)
{
int ret;
struct stage2_map_data map_data = {
.phys = KVM_PHYS_INVALID,
.mmu = pgt->mmu,
.memcache = mc,
.owner_id = owner_id,
.force_pte = true,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_map_walker,
.flags = KVM_PGTABLE_WALK_TABLE_PRE |
KVM_PGTABLE_WALK_LEAF,
.arg = &map_data,
};
if (owner_id > KVM_MAX_OWNER_ID)
return -EINVAL;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
return ret;
}
static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable *pgt = ctx->arg;
struct kvm_s2_mmu *mmu = pgt->mmu;
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
kvm_pte_t *childp = NULL;
bool need_flush = false;
if (!kvm_pte_valid(ctx->old)) {
if (stage2_pte_is_counted(ctx->old)) {
kvm_clear_pte(ctx->ptep);
mm_ops->put_page(ctx->ptep);
}
return 0;
}
if (kvm_pte_table(ctx->old, ctx->level)) {
childp = kvm_pte_follow(ctx->old, mm_ops);
if (mm_ops->page_count(childp) != 1)
return 0;
} else if (stage2_pte_cacheable(pgt, ctx->old)) {
need_flush = !stage2_has_fwb(pgt);
}
/*
* This is similar to the map() path in that we unmap the entire
* block entry and rely on the remaining portions being faulted
* back lazily.
*/
stage2_unmap_put_pte(ctx, mmu, mm_ops);
if (need_flush && mm_ops->dcache_clean_inval_poc)
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
kvm_granule_size(ctx->level));
if (childp)
mm_ops->put_page(childp);
return 0;
}
int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
int ret;
struct kvm_pgtable_walker walker = {
.cb = stage2_unmap_walker,
.arg = pgt,
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
};
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
if (stage2_unmap_defer_tlb_flush(pgt))
/* Perform the deferred TLB invalidations */
kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
return ret;
}
struct stage2_attr_data {
kvm_pte_t attr_set;
kvm_pte_t attr_clr;
kvm_pte_t pte;
u32 level;
};
static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
kvm_pte_t pte = ctx->old;
struct stage2_attr_data *data = ctx->arg;
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (!kvm_pte_valid(ctx->old))
return -EAGAIN;
data->level = ctx->level;
data->pte = pte;
pte &= ~data->attr_clr;
pte |= data->attr_set;
/*
* We may race with the CPU trying to set the access flag here,
* but worst-case the access flag update gets lost and will be
* set on the next access instead.
*/
if (data->pte != pte) {
/*
* Invalidate instruction cache before updating the guest
* stage-2 PTE if we are going to add executable permission.
*/
if (mm_ops->icache_inval_pou &&
stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
kvm_granule_size(ctx->level));
if (!stage2_try_set_pte(ctx, pte))
return -EAGAIN;
}
return 0;
}
static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
u64 size, kvm_pte_t attr_set,
kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
u32 *level, enum kvm_pgtable_walk_flags flags)
{
int ret;
kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
struct stage2_attr_data data = {
.attr_set = attr_set & attr_mask,
.attr_clr = attr_clr & attr_mask,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_attr_walker,
.arg = &data,
.flags = flags | KVM_PGTABLE_WALK_LEAF,
};
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
if (ret)
return ret;
if (orig_pte)
*orig_pte = data.pte;
if (level)
*level = data.level;
return 0;
}
int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
return stage2_update_leaf_attrs(pgt, addr, size, 0,
KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
NULL, NULL, 0);
}
kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
{
kvm_pte_t pte = 0;
int ret;
ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
&pte, NULL,
KVM_PGTABLE_WALK_HANDLE_FAULT |
KVM_PGTABLE_WALK_SHARED);
if (!ret)
dsb(ishst);
return pte;
}
struct stage2_age_data {
bool mkold;
bool young;
};
static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
struct stage2_age_data *data = ctx->arg;
if (!kvm_pte_valid(ctx->old) || new == ctx->old)
return 0;
data->young = true;
/*
* stage2_age_walker() is always called while holding the MMU lock for
* write, so this will always succeed. Nonetheless, this deliberately
* follows the race detection pattern of the other stage-2 walkers in
* case the locking mechanics of the MMU notifiers is ever changed.
*/
if (data->mkold && !stage2_try_set_pte(ctx, new))
return -EAGAIN;
/*
* "But where's the TLBI?!", you scream.
* "Over in the core code", I sigh.
*
* See the '->clear_flush_young()' callback on the KVM mmu notifier.
*/
return 0;
}
bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
u64 size, bool mkold)
{
struct stage2_age_data data = {
.mkold = mkold,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_age_walker,
.arg = &data,
.flags = KVM_PGTABLE_WALK_LEAF,
};
WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
return data.young;
}
int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
enum kvm_pgtable_prot prot)
{
int ret;
u32 level;
kvm_pte_t set = 0, clr = 0;
if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
return -EINVAL;
if (prot & KVM_PGTABLE_PROT_R)
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
if (prot & KVM_PGTABLE_PROT_W)
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
if (prot & KVM_PGTABLE_PROT_X)
clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
KVM_PGTABLE_WALK_HANDLE_FAULT |
KVM_PGTABLE_WALK_SHARED);
if (!ret)
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
return ret;
}
static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable *pgt = ctx->arg;
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
return 0;
if (mm_ops->dcache_clean_inval_poc)
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
kvm_granule_size(ctx->level));
return 0;
}
int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
struct kvm_pgtable_walker walker = {
.cb = stage2_flush_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = pgt,
};
if (stage2_has_fwb(pgt))
return 0;
return kvm_pgtable_walk(pgt, addr, size, &walker);
}
kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
u64 phys, u32 level,
enum kvm_pgtable_prot prot,
void *mc, bool force_pte)
{
struct stage2_map_data map_data = {
.phys = phys,
.mmu = pgt->mmu,
.memcache = mc,
.force_pte = force_pte,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_map_walker,
.flags = KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
KVM_PGTABLE_WALK_SKIP_CMO,
.arg = &map_data,
};
/*
* The input address (.addr) is irrelevant for walking an
* unlinked table. Construct an ambiguous IA range to map
* kvm_granule_size(level) worth of memory.
*/
struct kvm_pgtable_walk_data data = {
.walker = &walker,
.addr = 0,
.end = kvm_granule_size(level),
};
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
kvm_pte_t *pgtable;
int ret;
if (!IS_ALIGNED(phys, kvm_granule_size(level)))
return ERR_PTR(-EINVAL);
ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
if (ret)
return ERR_PTR(ret);
pgtable = mm_ops->zalloc_page(mc);
if (!pgtable)
return ERR_PTR(-ENOMEM);
ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
level + 1);
if (ret) {
kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
mm_ops->put_page(pgtable);
return ERR_PTR(ret);
}
return pgtable;
}
/*
* Get the number of page-tables needed to replace a block with a
* fully populated tree up to the PTE entries. Note that @level is
* interpreted as in "level @level entry".
*/
static int stage2_block_get_nr_page_tables(u32 level)
{
switch (level) {
case 1:
return PTRS_PER_PTE + 1;
case 2:
return 1;
case 3:
return 0;
default:
WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
level >= KVM_PGTABLE_MAX_LEVELS);
return -EINVAL;
};
}
static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
struct kvm_mmu_memory_cache *mc = ctx->arg;
struct kvm_s2_mmu *mmu;
kvm_pte_t pte = ctx->old, new, *childp;
enum kvm_pgtable_prot prot;
u32 level = ctx->level;
bool force_pte;
int nr_pages;
u64 phys;
/* No huge-pages exist at the last level */
if (level == KVM_PGTABLE_MAX_LEVELS - 1)
return 0;
/* We only split valid block mappings */
if (!kvm_pte_valid(pte))
return 0;
nr_pages = stage2_block_get_nr_page_tables(level);
if (nr_pages < 0)
return nr_pages;
if (mc->nobjs >= nr_pages) {
/* Build a tree mapped down to the PTE granularity. */
force_pte = true;
} else {
/*
* Don't force PTEs, so create_unlinked() below does
* not populate the tree up to the PTE level. The
* consequence is that the call will require a single
* page of level 2 entries at level 1, or a single
* page of PTEs at level 2. If we are at level 1, the
* PTEs will be created recursively.
*/
force_pte = false;
nr_pages = 1;
}
if (mc->nobjs < nr_pages)
return -ENOMEM;
mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
phys = kvm_pte_to_phys(pte);
prot = kvm_pgtable_stage2_pte_prot(pte);
childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
level, prot, mc, force_pte);
if (IS_ERR(childp))
return PTR_ERR(childp);
if (!stage2_try_break_pte(ctx, mmu)) {
kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
mm_ops->put_page(childp);
return -EAGAIN;
}
/*
* Note, the contents of the page table are guaranteed to be made
* visible before the new PTE is assigned because stage2_make_pte()
* writes the PTE using smp_store_release().
*/
new = kvm_init_table_pte(childp, mm_ops);
stage2_make_pte(ctx, new);
dsb(ishst);
return 0;
}
int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
struct kvm_mmu_memory_cache *mc)
{
struct kvm_pgtable_walker walker = {
.cb = stage2_split_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = mc,
};
return kvm_pgtable_walk(pgt, addr, size, &walker);
}
int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
struct kvm_pgtable_mm_ops *mm_ops,
enum kvm_pgtable_stage2_flags flags,
kvm_pgtable_force_pte_cb_t force_pte_cb)
{
size_t pgd_sz;
u64 vtcr = mmu->arch->vtcr;
u32 ia_bits = VTCR_EL2_IPA(vtcr);
u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
if (!pgt->pgd)
return -ENOMEM;
pgt->ia_bits = ia_bits;
pgt->start_level = start_level;
pgt->mm_ops = mm_ops;
pgt->mmu = mmu;
pgt->flags = flags;
pgt->force_pte_cb = force_pte_cb;
/* Ensure zeroed PGD pages are visible to the hardware walker */
dsb(ishst);
return 0;
}
size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
{
u32 ia_bits = VTCR_EL2_IPA(vtcr);
u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
}
static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
if (!stage2_pte_is_counted(ctx->old))
return 0;
mm_ops->put_page(ctx->ptep);
if (kvm_pte_table(ctx->old, ctx->level))
mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
return 0;
}
void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
{
size_t pgd_sz;
struct kvm_pgtable_walker walker = {
.cb = stage2_free_walker,
.flags = KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_TABLE_POST,
};
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
pgt->pgd = NULL;
}
void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level)
{
kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
struct kvm_pgtable_walker walker = {
.cb = stage2_free_walker,
.flags = KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_TABLE_POST,
};
struct kvm_pgtable_walk_data data = {
.walker = &walker,
/*
* At this point the IPA really doesn't matter, as the page
* table being traversed has already been removed from the stage
* 2. Set an appropriate range to cover the entire page table.
*/
.addr = 0,
.end = kvm_granule_size(level),
};
WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
WARN_ON(mm_ops->page_count(pgtable) != 1);
mm_ops->put_page(pgtable);
}