mirror of
https://github.com/lkl/linux.git
synced 2025-12-19 08:03:01 +09:00
commitf922c13e77("KVM: arm64: Introduce pkvm_alloc_private_va_range()") and commit92abe0f81e("KVM: arm64: Introduce hyp_alloc_private_va_range()") added an alignment for the start address of any allocation into the nVHE hypervisor private VA range. This alignment (order of the size of the allocation) intends to enable efficient stack verification (if the PAGE_SHIFT bit is zero, the stack pointer is on the guard page and a stack overflow occurred). But this is only necessary for stack allocation and can waste a lot of VA space. So instead make stack-specific functions, handling the guard page requirements, while other users (e.g. fixmap) will only get page alignment. Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230811112037.1147863-1-vdonnefort@google.com
424 lines
9.9 KiB
C
424 lines
9.9 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2020 Google LLC
|
|
* Author: Quentin Perret <qperret@google.com>
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_pgtable.h>
|
|
#include <asm/kvm_pkvm.h>
|
|
#include <asm/spectre.h>
|
|
|
|
#include <nvhe/early_alloc.h>
|
|
#include <nvhe/gfp.h>
|
|
#include <nvhe/memory.h>
|
|
#include <nvhe/mem_protect.h>
|
|
#include <nvhe/mm.h>
|
|
#include <nvhe/spinlock.h>
|
|
|
|
struct kvm_pgtable pkvm_pgtable;
|
|
hyp_spinlock_t pkvm_pgd_lock;
|
|
|
|
struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
|
|
unsigned int hyp_memblock_nr;
|
|
|
|
static u64 __io_map_base;
|
|
|
|
struct hyp_fixmap_slot {
|
|
u64 addr;
|
|
kvm_pte_t *ptep;
|
|
};
|
|
static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots);
|
|
|
|
static int __pkvm_create_mappings(unsigned long start, unsigned long size,
|
|
unsigned long phys, enum kvm_pgtable_prot prot)
|
|
{
|
|
int err;
|
|
|
|
hyp_spin_lock(&pkvm_pgd_lock);
|
|
err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
|
|
hyp_spin_unlock(&pkvm_pgd_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __pkvm_alloc_private_va_range(unsigned long start, size_t size)
|
|
{
|
|
unsigned long cur;
|
|
|
|
hyp_assert_lock_held(&pkvm_pgd_lock);
|
|
|
|
if (!start || start < __io_map_base)
|
|
return -EINVAL;
|
|
|
|
/* The allocated size is always a multiple of PAGE_SIZE */
|
|
cur = start + PAGE_ALIGN(size);
|
|
|
|
/* Are we overflowing on the vmemmap ? */
|
|
if (cur > __hyp_vmemmap)
|
|
return -ENOMEM;
|
|
|
|
__io_map_base = cur;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pkvm_alloc_private_va_range - Allocates a private VA range.
|
|
* @size: The size of the VA range to reserve.
|
|
* @haddr: The hypervisor virtual start address of the allocation.
|
|
*
|
|
* The private virtual address (VA) range is allocated above __io_map_base
|
|
* and aligned based on the order of @size.
|
|
*
|
|
* Return: 0 on success or negative error code on failure.
|
|
*/
|
|
int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
|
|
{
|
|
unsigned long addr;
|
|
int ret;
|
|
|
|
hyp_spin_lock(&pkvm_pgd_lock);
|
|
addr = __io_map_base;
|
|
ret = __pkvm_alloc_private_va_range(addr, size);
|
|
hyp_spin_unlock(&pkvm_pgd_lock);
|
|
|
|
*haddr = addr;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
|
|
enum kvm_pgtable_prot prot,
|
|
unsigned long *haddr)
|
|
{
|
|
unsigned long addr;
|
|
int err;
|
|
|
|
size = PAGE_ALIGN(size + offset_in_page(phys));
|
|
err = pkvm_alloc_private_va_range(size, &addr);
|
|
if (err)
|
|
return err;
|
|
|
|
err = __pkvm_create_mappings(addr, size, phys, prot);
|
|
if (err)
|
|
return err;
|
|
|
|
*haddr = addr + offset_in_page(phys);
|
|
return err;
|
|
}
|
|
|
|
int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
|
|
{
|
|
unsigned long start = (unsigned long)from;
|
|
unsigned long end = (unsigned long)to;
|
|
unsigned long virt_addr;
|
|
phys_addr_t phys;
|
|
|
|
hyp_assert_lock_held(&pkvm_pgd_lock);
|
|
|
|
start = start & PAGE_MASK;
|
|
end = PAGE_ALIGN(end);
|
|
|
|
for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
|
|
int err;
|
|
|
|
phys = hyp_virt_to_phys((void *)virt_addr);
|
|
err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
|
|
phys, prot);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
|
|
{
|
|
int ret;
|
|
|
|
hyp_spin_lock(&pkvm_pgd_lock);
|
|
ret = pkvm_create_mappings_locked(from, to, prot);
|
|
hyp_spin_unlock(&pkvm_pgd_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int hyp_back_vmemmap(phys_addr_t back)
|
|
{
|
|
unsigned long i, start, size, end = 0;
|
|
int ret;
|
|
|
|
for (i = 0; i < hyp_memblock_nr; i++) {
|
|
start = hyp_memory[i].base;
|
|
start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
|
|
/*
|
|
* The begining of the hyp_vmemmap region for the current
|
|
* memblock may already be backed by the page backing the end
|
|
* the previous region, so avoid mapping it twice.
|
|
*/
|
|
start = max(start, end);
|
|
|
|
end = hyp_memory[i].base + hyp_memory[i].size;
|
|
end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
|
|
if (start >= end)
|
|
continue;
|
|
|
|
size = end - start;
|
|
ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memset(hyp_phys_to_virt(back), 0, size);
|
|
back += size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *__hyp_bp_vect_base;
|
|
int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
|
|
{
|
|
void *vector;
|
|
|
|
switch (slot) {
|
|
case HYP_VECTOR_DIRECT: {
|
|
vector = __kvm_hyp_vector;
|
|
break;
|
|
}
|
|
case HYP_VECTOR_SPECTRE_DIRECT: {
|
|
vector = __bp_harden_hyp_vecs;
|
|
break;
|
|
}
|
|
case HYP_VECTOR_INDIRECT:
|
|
case HYP_VECTOR_SPECTRE_INDIRECT: {
|
|
vector = (void *)__hyp_bp_vect_base;
|
|
break;
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
vector = __kvm_vector_slot2addr(vector, slot);
|
|
*this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hyp_map_vectors(void)
|
|
{
|
|
phys_addr_t phys;
|
|
unsigned long bp_base;
|
|
int ret;
|
|
|
|
if (!kvm_system_needs_idmapped_vectors()) {
|
|
__hyp_bp_vect_base = __bp_harden_hyp_vecs;
|
|
return 0;
|
|
}
|
|
|
|
phys = __hyp_pa(__bp_harden_hyp_vecs);
|
|
ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ,
|
|
PAGE_HYP_EXEC, &bp_base);
|
|
if (ret)
|
|
return ret;
|
|
|
|
__hyp_bp_vect_base = (void *)bp_base;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void *hyp_fixmap_map(phys_addr_t phys)
|
|
{
|
|
struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots);
|
|
kvm_pte_t pte, *ptep = slot->ptep;
|
|
|
|
pte = *ptep;
|
|
pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID);
|
|
pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID;
|
|
WRITE_ONCE(*ptep, pte);
|
|
dsb(ishst);
|
|
|
|
return (void *)slot->addr;
|
|
}
|
|
|
|
static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
|
|
{
|
|
kvm_pte_t *ptep = slot->ptep;
|
|
u64 addr = slot->addr;
|
|
|
|
WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID);
|
|
|
|
/*
|
|
* Irritatingly, the architecture requires that we use inner-shareable
|
|
* broadcast TLB invalidation here in case another CPU speculates
|
|
* through our fixmap and decides to create an "amalagamation of the
|
|
* values held in the TLB" due to the apparent lack of a
|
|
* break-before-make sequence.
|
|
*
|
|
* https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03
|
|
*/
|
|
dsb(ishst);
|
|
__tlbi_level(vale2is, __TLBI_VADDR(addr, 0), (KVM_PGTABLE_MAX_LEVELS - 1));
|
|
dsb(ish);
|
|
isb();
|
|
}
|
|
|
|
void hyp_fixmap_unmap(void)
|
|
{
|
|
fixmap_clear_slot(this_cpu_ptr(&fixmap_slots));
|
|
}
|
|
|
|
static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx,
|
|
enum kvm_pgtable_walk_flags visit)
|
|
{
|
|
struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg);
|
|
|
|
if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_MAX_LEVELS - 1)
|
|
return -EINVAL;
|
|
|
|
slot->addr = ctx->addr;
|
|
slot->ptep = ctx->ptep;
|
|
|
|
/*
|
|
* Clear the PTE, but keep the page-table page refcount elevated to
|
|
* prevent it from ever being freed. This lets us manipulate the PTEs
|
|
* by hand safely without ever needing to allocate memory.
|
|
*/
|
|
fixmap_clear_slot(slot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int create_fixmap_slot(u64 addr, u64 cpu)
|
|
{
|
|
struct kvm_pgtable_walker walker = {
|
|
.cb = __create_fixmap_slot_cb,
|
|
.flags = KVM_PGTABLE_WALK_LEAF,
|
|
.arg = (void *)cpu,
|
|
};
|
|
|
|
return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
|
|
}
|
|
|
|
int hyp_create_pcpu_fixmap(void)
|
|
{
|
|
unsigned long addr, i;
|
|
int ret;
|
|
|
|
for (i = 0; i < hyp_nr_cpus; i++) {
|
|
ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
|
|
__hyp_pa(__hyp_bss_start), PAGE_HYP);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = create_fixmap_slot(addr, i);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hyp_create_idmap(u32 hyp_va_bits)
|
|
{
|
|
unsigned long start, end;
|
|
|
|
start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
|
|
start = ALIGN_DOWN(start, PAGE_SIZE);
|
|
|
|
end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
|
|
end = ALIGN(end, PAGE_SIZE);
|
|
|
|
/*
|
|
* One half of the VA space is reserved to linearly map portions of
|
|
* memory -- see va_layout.c for more details. The other half of the VA
|
|
* space contains the trampoline page, and needs some care. Split that
|
|
* second half in two and find the quarter of VA space not conflicting
|
|
* with the idmap to place the IOs and the vmemmap. IOs use the lower
|
|
* half of the quarter and the vmemmap the upper half.
|
|
*/
|
|
__io_map_base = start & BIT(hyp_va_bits - 2);
|
|
__io_map_base ^= BIT(hyp_va_bits - 2);
|
|
__hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
|
|
|
|
return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
|
|
}
|
|
|
|
int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr)
|
|
{
|
|
unsigned long addr, prev_base;
|
|
size_t size;
|
|
int ret;
|
|
|
|
hyp_spin_lock(&pkvm_pgd_lock);
|
|
|
|
prev_base = __io_map_base;
|
|
/*
|
|
* Efficient stack verification using the PAGE_SHIFT bit implies
|
|
* an alignment of our allocation on the order of the size.
|
|
*/
|
|
size = PAGE_SIZE * 2;
|
|
addr = ALIGN(__io_map_base, size);
|
|
|
|
ret = __pkvm_alloc_private_va_range(addr, size);
|
|
if (!ret) {
|
|
/*
|
|
* Since the stack grows downwards, map the stack to the page
|
|
* at the higher address and leave the lower guard page
|
|
* unbacked.
|
|
*
|
|
* Any valid stack address now has the PAGE_SHIFT bit as 1
|
|
* and addresses corresponding to the guard page have the
|
|
* PAGE_SHIFT bit as 0 - this is used for overflow detection.
|
|
*/
|
|
ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + PAGE_SIZE,
|
|
PAGE_SIZE, phys, PAGE_HYP);
|
|
if (ret)
|
|
__io_map_base = prev_base;
|
|
}
|
|
hyp_spin_unlock(&pkvm_pgd_lock);
|
|
|
|
*haddr = addr + size;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void *admit_host_page(void *arg)
|
|
{
|
|
struct kvm_hyp_memcache *host_mc = arg;
|
|
|
|
if (!host_mc->nr_pages)
|
|
return NULL;
|
|
|
|
/*
|
|
* The host still owns the pages in its memcache, so we need to go
|
|
* through a full host-to-hyp donation cycle to change it. Fortunately,
|
|
* __pkvm_host_donate_hyp() takes care of races for us, so if it
|
|
* succeeds we're good to go.
|
|
*/
|
|
if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1))
|
|
return NULL;
|
|
|
|
return pop_hyp_memcache(host_mc, hyp_phys_to_virt);
|
|
}
|
|
|
|
/* Refill our local memcache by poping pages from the one provided by the host. */
|
|
int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
|
|
struct kvm_hyp_memcache *host_mc)
|
|
{
|
|
struct kvm_hyp_memcache tmp = *host_mc;
|
|
int ret;
|
|
|
|
ret = __topup_hyp_memcache(mc, min_pages, admit_host_page,
|
|
hyp_virt_to_phys, &tmp);
|
|
*host_mc = tmp;
|
|
|
|
return ret;
|
|
}
|